Toward the mechanism of dynamical couplings and translocation in hepatitis C virus NS3 helicase using elastic network model.
نویسندگان
چکیده
Hepatitis C virus NS3 helicase is an enzyme that unwinds double-stranded polynucleotides in an ATP-dependent reaction. It provides a promising target for small molecule therapeutic agents against hepatitis C. Design of such drugs requires a thorough understanding of the dynamical nature of the mechanochemical functioning of the helicase. Despite recent progress, the detailed mechanism of the coupling between ATPase activity and helicase activity remains unclear. Based on an elastic network model (ENM), we apply two computational analysis tools to probe the dynamical mechanism underlying the allosteric coupling between ATP binding and polynucleotide binding in this enzyme. The correlation analysis identifies a network of hot-spot residues that dynamically couple the ATP-binding site and the polynucleotide-binding site. Several of these key residues have been found by mutational experiments as functionally important, while our analysis also reveals previously unexplored hot-spot residues that are potential targets for future mutational studies. The conformational changes between different crystal structures of NS3 helicase are found to be dominated by the lowest frequency mode solved from the ENM. This mode corresponds to a hinge motion of the highly flexible domain 2. This motion simultaneously modulates the opening/closing of the domains 1-2 cleft where ATP binds, and the domains 2-3 cleft where the polynucleotide binds. Additionally, a small twisting motion of domain 1, observed in both mode 1 and the computed ATP binding induced conformational change, fine-tunes the binding affinity of the domains 1-3 interface for the polynucleotide. The combination of these motions facilitates the translocation of a single-stranded polynucleotide in an inchworm-like manner.
منابع مشابه
Cloning and expression of NS3 helicase fragment of hepatitis C virus and the study of its immunoreactivity in HCV infected patients
Objective(s): Hepatitis C is a major cause of liver failure worldwide. Current therapies applied for this disease are not fully effective and produce side effects in most cases. Non-structural protein 3 helicase (NS3) of HCV is one of the key enzymes in viral replication and infection. Therefore, this region is a promising target to design new drugs and therapies against HCV infection. The aim ...
متن کاملStructure-based simulations of the translocation mechanism of the hepatitis C virus NS3 helicase along single-stranded nucleic acid.
The NS3 helicase of Hepatitis C virus is an ATP-fueled molecular motor that can translocate along single-stranded (ss) nucleic acid, and unwind double-stranded nucleic acids. It makes a promising antiviral target and an important prototype system for helicase research. Despite recent progress, the detailed mechanism of NS3 helicase remains unknown. In this study, we have combined coarse-grained...
متن کاملThe protease domain increases the translocation stepping efficiency of the hepatitis C virus NS3-4A helicase.
Hepatitis C virus (HCV) NS3 protein has two enzymatic activities of helicase and protease that are essential for viral replication. The helicase separates the strands of DNA and RNA duplexes using the energy from ATP hydrolysis. To understand how ATP hydrolysis is coupled to helicase movement, we measured the single turnover helicase translocation-dissociation kinetics and the pre-steady-state ...
متن کاملEstablishment of NS3 tumor cell line expressing Hepatitis C virus Non-structural Protein 3 as valuable tool for HCV challenging in mice
Introduction: Hepatitis C virus (HCV) is one of the major medical problems. Human and chimpanzees are the only specific hosts which are naturally susceptible to HCV infection. Mice and other common laboratory animals are resistant to the virus, hence HCV prophylactic and therapeutic researches are very difficult and challenging. HCV non-structural protein 3 (NS3) is one of the most attractive t...
متن کاملComputational Study on the Inhibitor Binding Mode and Allosteric Regulation Mechanism in Hepatitis C Virus NS3/4A Protein
HCV NS3/4A protein is an attractive therapeutic target responsible for harboring serine protease and RNA helicase activities during the viral replication. Small molecules binding at the interface between the protease and helicase domains can stabilize the closed conformation of the protein and thus block the catalytic function of HCV NS3/4A protein via an allosteric regulation mechanism. But th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proteins
دوره 67 4 شماره
صفحات -
تاریخ انتشار 2007